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Total synthesis of macrosphelides B and A
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Abstract

An efficient total synthesis of macrosphelide B has been developed in which the C(5)-O(10) and the
C(11)-0(16) fragments were prepared fro8y-1-(2-furyl)ethanol of >98% ee via oxidation of the furan part.
In addition, macrosphelide B was transformed stereoselectively into macrosphelide A by reduction followed by
Mitsunobu inversion. © 2000 Elsevier Science Ltd. All rights reserved.
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Macrosphelides A and B, which are producedMicrosphaeropsisp. FO-5050, were isolated by
Omura and co-worketsand have been shown to strongly inhibit the adhesion of human leukemia HL-60
cells to human umbilical-vein endothelial cells without inhibiting the growth of various mammalian cell
lines and microorganisms; consequently, they are highly attractive compounds for use as next-generation
chemotherapeutical drugs against catdeecently, the 3D structures of macrosphelides A and B have
been determined as depictedlirand 2, respectively, and a total synthesislofvas accomplished by
collaboration of Omura and Smithln their synthesis, the hydroxyl groups are installed on the sorbic
ester by using the Sharpless AD reactiarith 85% ee> and the conversion dfinto 2 by PDC oxidation
proceeds with low regioselectivity and efficiency, as expected. These results prompted us to investigate an
alternative strategy whereby synthesi2dd carried out first, and hydride reduction2br a macrocyclic
intermediate thereof (ketone) follows to syntheslzé\dvantages of this strategy are probably that: (1)
synthesis oR would be accomplished more easily than thaf.gince there is one less chiral center in
2; and (2) reduction o would proceed with high diastereoselectivity due to the conformational bias
provided by the macrocycle. Herein, we report a successful result of this strategy.
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The target molecul@ would be synthesized through macrocyclization of seco 8dq8cheme 1).
Based on the fact that chemically stable 2-alkyl furans are a synthetic equivalent of the rather unstable
-ox0- , -unsaturated carboxylic acids through the method developed by us (E§3(®@s dissected
into pieces4—6. Acid 5 is available via the asymmetric reduction of acetoacétathjle methods for
the preparation 06 have been publishédConcerning fragmend, the furan-ring oxidation (Eq. (1))
of an appropriately protected alcoh®followed by reduction of the resulting-keto acid would be an
appropriate method.
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Scheme 1. Starting compounds and intermediates for synthesis of macrosphé)de B (

Among possible sequences for assembling fragmematsd 6, the route presented in Scheme 2 was
chosen on the basis of the number of reaction steps involved, in which chelation-controlled reduction
of ketonell to afford the desirednti alcohol12 is a crucial step in the synthesis. Alcol®bf >98%
e€ was prepared by the kinetic resolution of the corresponding racemic aféarsing the Sharpless
reagen? (38% yield based on the racemic alcohol). Conversio6 inito the PMB ethei7 was carried
out as usual, andwas then transformed into-keto acid8 by the oxidative conversion shown in Eq. (1)
(48% yield from6) (Scheme 2). On the other hand, condensation of &tid? (99% ee) and alcohol
6 with DCC in the presence of DMAP and C&¥produced ested, which upon desilylation furnished
alcohol 10 in good yield. Condensation of acland alcoholl0 was also accomplished with DCC to
afford11in 92% yield.

1) NBS 0

ﬂ\ Hogc/\/”\ﬂ (1)

o R 2) NaClO,

Next, reductiof® of 11 with Zn(BHj,), was investigated. Unfortunately, a mixturel&and its epimer
was obtained in a ratio of 2:1 wherl was added to an ethereal solution of Zn@BHeven at —90°C.
It might be reasonable to assume that Zn{8BIR), n}2, which was formed in the early stage of the
reduction, participated in the reduction of the remaining ketbhevithout chelation due to the steric
bulkiness of Zn{BH,(OR)s n} 2, thus furnishing the diastereomeric mixture after aqueous work-up. After
several unsuccessful trials, it was found that reverse addition could improve the ratio to a practical level
of 15:1 in 70% yield. The result is consistent with the above assumption. Protection of alélith
MOMCI and subsequent deprotection of the PMB group with DDQ furnished aldahiol 82% yield.
Without protection of the hydroxyl groufid was converted into the key acby the two-step oxidation
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Scheme 2. Reagents and conditions: (a) NaH, PMBCI, 93%. (b) NBS, acet@nhelbtl, 15°C, 1 h then furan, §4sN, rt, 6
h, 74%. (c) NaCI@, MeC(H)=CMe;,, 70%. (d) DCC, DMAP, CSA, rt, overnight, 98% f8rand 92% forll. (e) TBAF, THF,
0°C, 24 h, 73%. (f) Zn(BH)),, ELO, —-90°C, 70%. (g) MOMCIj-Pr,NEt, CH,Cl,, 88%. (h) DDQ, CHCI,/H,0, 93%. (i and
j) similar conditions to (b) and (c). (k) @CsH,COCI, NEt then DMAP, toluene, 40°C, 5 h, 40% frofak. (I) TFA/CH,Cl,,

1:1,rt,1.5h, 92%

via aldehydel5. Lactonization of crude seco acBlwas carried out by the Yamaguchi methado
produce lactonel6® in 40% yield from 14. Finally, deprotection of the MOM group with TFA in
CH,Cl, furnished2 in good yield: ~ 2*=+9.1 € 0.154, MeOH); litt?  2°=+4.10 € 0.99, MeOH);
lit.3>  3*=+10.0 €0.39, MeOH). ThéH NMR and3C NMR spectra of synthetl?:were identical with
the data reported in the literatut@3
Next, we examined a synthesis of macrosphelidé)A%$cheme 3). Theoretically, chelation-controlled

reductiort* of ketonel6 should providel 8 of the desired stereochemistry at C(14). However, reduction
of 16 with Zn(BHs4)2 at  78°C resulted in a 1:1 mixture df7 and18. On the contrary, NaBlHin MeOH
at 15°C providedl7 highly selectively (>10:1). These results indicate that macrocy6leakes one
stable conformer, where the undesired side of the carbonyl group at C(143 {ace) is exposed to the
outside of the macrocyclic ring, thus furnishing a bias for stereoselective reduction even with a simple
reagent such as NaBHThe newly-formed hydroxyl group ih7 was inverted by Mitsunobu reactibh
with HCO;H, DEAD, and PPk and methanolysis of the formate with NEh MeOH furnishedl8 in
72% yield. Finally, deprotection with TFA affordeidin 70% yield: ~ 3°=+85 (¢ 0.046, MeOH); litlP

23=484.1 € 0.59, MeOH); lit3  2'=+82 (c 0.10, MeOH). Similarly, treatment df7 with TFA
furnished 14-epimer df (i.e.,19) in 86% vyield.
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Scheme 3. Synthesis of macrosphelidelp (
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